skip to main content


Search for: All records

Creators/Authors contains: "Peterson, Gregory W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Defense against small molecule toxic gases is an important aspect of protection against chemical and biological threat as well as chemical releases from industrial accidents. Current protective respirators/garments cannot effectively block small molecule toxic gases and vapors and retain moisture transmission capability without a heavy burden. Here, we developed a nanopacked bed of nanoparticles of UiO-66-NH₂ metal organic framework (MOF) by synthesizing them in the pores of microporous expanded polytetrafluoroethylene (ePTFE) membranes. The submicron scale size of membrane pores ensures a large surface area of MOF nanoparticles which can capture/adsorb and react with toxic gas molecules efficiently. It was demonstrated that the microporous ePTFE membrane with UiO-66-NH₂ MOF grown inside and around the membrane can defend against ammonia for a significant length of time while allowing passage of moisture and nitrogen. It was also demonstrated that the MOF-loaded ePTFE membrane could provide significant protection from Cl₂ intrusion as well as intrusion from 2-chloroethyl ethyl sulfide (CEES) (a simulant for sulfur mustard). Such MOF-filled membranes exhausted by NH₃ breakthrough experiments were regenerated conveniently by heating at 60 °C for one week under vacuum for further/repeated use; a single regenerated membrane could block NH₃ for 200–300 min. The moisture permeability of such a membrane/nanopacked bed was considerably above the breathability threshold value of 2000 g/m² -day. The results suggest that microporous membranes filled with reactive MOF nanoparticles could be designed as protective barriers against toxic gases/vapors, e.g., NH₃ and Cl₂ and yet be substantially permeable to H₂O and air. 
    more » « less
  2. Abstract

    Current approaches to create zirconium‐based metal–organic framework (MOF) fabric composites for catalysis, water purification, wound healing, gas sorption, and other applications often rely on toxic solvents, long reaction/post processing times, and batch methods hindering process scalability. Here, a novel mechanism was reported for rapid UiO‐66‐NH2synthesis in common low‐boiling‐point solvents (water, ethanol, and acetic acid) and revealed acid–base chemistry promoting full linker dissolution and vapor‐based crystallization. The mechanism enabled scalable roll‐to‐roll production of mechanically resilient UiO‐66‐NH2fabrics with superior chemical protective capability. Solvent choice and segregated spray delivery of organic linker and metal salt MOF precursor solutions allowed for rapid MOF nucleation on the fiber surface and decreased the energy and time needed for post‐processing, producing an activated composite in less than 165 min, far outpacing conventional MOF‐fabric synthesis approaches. The MOF‐fabric hydrolyzed and blocked permeation of the chemical warfare agent soman, outperforming the protection‐standard activated carbon cloth. This work presents both chemical insights into Zr‐MOF powder and fabric composite formation by a rapid, industrially relevant approach and demonstrates its practicality and affordability for high‐performing personal protective equipment.

     
    more » « less
  3. Abstract

    The fabrication of MOF polymer composite materials enables the practical applications of MOF‐based technology, in particular for protective suits and masks. However, traditional production methods typically require organic solvent for processing which leads to environmental pollution, low‐loading efficiency, poor accessibility, and loss of functionality due to poor solvent resistance properties. For the first time, we have developed a microbial synthesis strategy to prepare a MOF/bacterial cellulose nanofiber composite sponge. The prepared sponge exhibited a hierarchically porous structure, high MOF loading (up to ≈90 %), good solvent resistance, and high catalytic activity for the liquid‐ and solid‐state hydrolysis of nerve agent simulants. Moreover, the MOF/ bacterial cellulose composite sponge reported here showed a nearly 8‐fold enhancement in the protection against an ultra‐toxic nerve agent (GD) in permeability studies as compared to a commercialized adsorptive carbon cloth. The results shown here present an essential step toward the practical application of MOF‐based protective gear against nerve agents.

     
    more » « less
  4. Abstract

    The fabrication of MOF polymer composite materials enables the practical applications of MOF‐based technology, in particular for protective suits and masks. However, traditional production methods typically require organic solvent for processing which leads to environmental pollution, low‐loading efficiency, poor accessibility, and loss of functionality due to poor solvent resistance properties. For the first time, we have developed a microbial synthesis strategy to prepare a MOF/bacterial cellulose nanofiber composite sponge. The prepared sponge exhibited a hierarchically porous structure, high MOF loading (up to ≈90 %), good solvent resistance, and high catalytic activity for the liquid‐ and solid‐state hydrolysis of nerve agent simulants. Moreover, the MOF/ bacterial cellulose composite sponge reported here showed a nearly 8‐fold enhancement in the protection against an ultra‐toxic nerve agent (GD) in permeability studies as compared to a commercialized adsorptive carbon cloth. The results shown here present an essential step toward the practical application of MOF‐based protective gear against nerve agents.

     
    more » « less